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ABSTRACT 

The equilibrium structure and thermodynamics of a simple liquid is 

discussed. The particular system considered in our calculations is the 

Lenuard-Jones liquid in which the intcrmolecular interaction is the pairwise 

additive 6-12 potential, w(r)=4c[(o/r) -(a/r) ]. The potential is separated 

into two parts, a reference part containing all the repulsive forces and 

a perturbation containing all the attractive forces.  (This separation 

is distinctly different from the often-used separation of the potential 

into positive and negative parts.)  It is found that the effects of the 

two parts of the potential on the structure of the liquid are most easily 

discusse ' in terms of the structure factor (or equivalently, the Fourier 

transform of the pair-correlation function) rather than the pair- 

correlation function itself. Tor values of the Fourier transform 

variable, k, greater than about n/o, where o is the distance at which 

the intcrmolecular potential is zero, the attractive part of the 

potential has very little effect on the structure factor for reduced 

densities greater than about .5; i.e., for these values of k, the 

structure factor is equal to that of a hypothetical reference fluid which 

has only the repulsive forces. The attractive part of the potential 

manifests itself primarily in the small k part of the structure factor, 

but this effect decreases as the density increases and is almost negligible 

at reduced densities of about .7. These conclusions are established by 

comparing Verlet's molecular dynamics structure factor for the Lennard-Jones 

fluid with the reference system structure factors calculated with the aid 

of a simple but accurate approximation described herein. On the basis of 
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these results a very simple proscription is given for calculating the 

radial distribution function of a simple liquid at high densities which 

is more accurate than those obtained by any previously reported theory. 

Calculations of the free energy, internal energy, and even the pressure 

with the aid of the pressure (virial) cquatiun are remarkably accurate 

and provide additional support for the conclusions. In short, wc find 

that the structure factor and pair distribution function of a simple 

fluid is dominated by the repulsive forces at high densities even at low 

temperatures. The implications of our conclusions to perturbation theories 

for liquids, and to the interpretation of x-ray scattering experiments is 

discussed. 
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I.  INTRODUCTION 

The investigation described in this paper was motivated by Verlet's 

interesting work on a hard-sphere model for the equilibrium structure of 

simple liquids^  and by Barker and Henderson's ingenious application of 

the high-tcmperaturc expansion to obtain the thermodynamic properties of 

(2 i) 
Lennard-Joncs liquids starting from those of a hard-sphere systeiir ' ' . 

The Verlet and Bavker-Ucndcrson work, as well as other considcr- 

(4 5) ations  ' , suggest to us that a theory of liquids should consider 

explicit/ the role that the repulsions play in determining the structure 

and thermodynamics of simple liquids. In particular, we hypothesize 

that in some representation, the repulsive forces should dominate the 

equilibrium structure. As might be expected from Verlet's molecular 

dynamics investigation, a suitable representation is obtained by 

considering the structure factor or(equivalently) the Fourier transform 

of the two-particle correlation function. We find that at moderate and 

high densities, a significant portion of the structure factor is 

quantitatively dominated by the repulsive forces. This indicates that 

the separation of the Lennard-Jones potential into reference and perturb- 

ation parts used by Barker and Henderson is not the most physically 

appropriate. In this separation, the reference potential contains the 

positive part of the potential, and the perturbation contains the negative 

part of the potential (with the convention that the intermolecular potential 

is zero for infinite separation). Rather we find that it is physically 

significant and useful to separate the interaction into a part containing 

all the repulsive forces and a part containing all the attractive forces. 



I.  INTRODUCTION 
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At liquid temperatures and densities, energy considerations make a nearest 

neighbor pair of molecules tend to be separated by a distance corresponding 

to the minimum in the potential, while the effect of the surrounding 

molecules is to push them closer together. Ir the balance between these 

effects, that part of the potential which lies between the minimum of the 

potential and the zero of the potential is certainly important. As far as 

the dynamics of nearest neighbor pairii is cone ned, the molecules do not 

"know" the bgn of the r mutual potential energy (relative to a zero of 

energy in which they are infinitely far apart). They are, however, very 

much aware of the derivative of that potential (i.e, the force). By 

considering the different roles the attractive and repulsive forces play, 

we are able to discover a simple expression for the radial distribution 

function of a dense Lennard-Jones liquid that is more accurate than those 

obtained by any previously reported theory. Furthermore, our separation 

into repulsive and attractive parts leads to a quantitative description of 

the thermodynamic«; of dense simple liquids thronph the >se of the high- 

temperature expansion to first order, which we call the high-temperature 

approximation.  In addition to explaining the surprising success of our 

application of the high-temperature approximation at liquid temperatures, 

our results indicate that the straight-forward use of subsequent terms in 

the high-temperature expansion is not the most appropriate theory to correct 

the high-temperature approximation. 

As stated above, we consider a Lennard-Jones fluid, that is, a 

classical system of N molecules in a volume V whose total potential energy 

can be written as a sum of spherically-symmetric pair-potentials of the 
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6-12 type 

w(r) - 4e [(o/r)
12 - (o/r)6] . (1) 

Here, o has the units of length, and e the units of energy. In terms of 

these parameters, the frequently used dimensionless representations of the 

number density, p » N/V, and the temperature are 

.3 

(2) 

where ß is the reciprocal of Boltzmann's constant times the temperature. 

The structure of the Lennard-Jones system is conveniently described in 

terms of the two-particle correlation function and its Fourier transform. 

The correlation function is 

h(r) = g(r) - 1 (3) 

where g(r) is the usual radial distribution function^ . [Given that a 

2 
particle is at the origin, Airr pg(r) is the probability distribution for 

finding a particle located a distance r away from the origin.] The 

dimensionless Fourier transform of the correlation function is 

ft(k) = p^dE h(r) e"^'1 (4) 

The structure factor, xW , is simply h(k)  + 1, and it is measured directly 

by scattering experiments performed on a fluid. 

In this paper, attention is focused on h(k)   for the Lennard-Jones 
3 

liquid.    In particular,  for liquid densities  (po   j> .4)  we hypothesize and 

then verify the following statements:    1.    At intermediate and large 

wave-vectors  (kq^tr), the quantitative behavior of h(k)   is dominated by 

the repulsive forces  (the attractive forces are primarily manifested in 



the small wave-vector portion of the spectrum); 2. For high densities 

(po ;>.65) the behavior of h(k) even at small wave-vectors (KOSTT) is at 

least qualitatively Jetermincd by the repulsive forces. Physically, the 

first statement is understood once it is recalled that h(k) ♦ 1 represents 

the linear response of the fluid structure to a disturbance of wavelength 

2n/k   . While a short wavelength disturbance will probe both the 

repulsive and attractive forces in a fluid, it is reasonable that the 

harsh repulsions, rather than the slowly varying longer ranged attractions, 

will dominate the response of the fluid to such a disturbance. The second 

statement is equivalent to asserting that the correlations in a simple 

liquid are almost entirely due to excluded volume effects when the density 

is high. While this latter part of our hypothesis has been stated quali- 

tatively by many authors ' '   , its quantitative validity has not been 

appreciated. 

We consider and attempt to verify the consequence of our hypothesis 

within the framework of a simple computational scheme. The relevant 

statistical mechanics is discussed in Section II. The numerical 

ramifications, and thus justification, of the hypothesis are presented 

in Section III. The paper is concluded in Section IV with a discussion 

of the significance of our work. 
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11. THEORY 

For the physical reasons stated above/ we separate the intermolecular 

potential into two parts: 

w(r) ■ uo(r) ♦ u(r) (5) 

We call u (r) the reference system pair-potential and u(r)  the perturbation 

potential.    For the particular separation in which we arc interested, 

u (r)  includes all the repulsive forces in the Lcnnard-Joncs potential and 

u(r)  all the attractions.    With the additional condition that the 

reference system has a well-defined thermodynantic limit, this separation 

is unique: 

u (r) » w(r) * c,    r<2 ' o I 

- o ,    r221/6o) 

u(r) « -e ,    r<21/6c 

« w(r) ,    ri21/6oj 
(7) 

These functions are depicted in Figure 1. 

The hypothesis we try to verify in this paper is that for some range 

of wave-vectors 

V) = ft (k) (8) 
4 

where n (k) is the Fourier transform of the reference syste. two-particle 

correlation function. In particular, we assert that at moderate ind high 

densities, Equation 8 is nearly exact for ko>ir, and at high densities 

Equation 8 is accurate for smaller wave-vectors as well. In the next 

section we show that the assertion appears to be true, and as a result we 
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arc able to construct a simple approximation for g(r) that is very accurate 

at high densities. 

The ihcrmoJynamic ramifications of our postulate can also be discussed. 

First, we consider the free energy. This is done by introducing a "test" 

potential 

w(r;X) = u (r) ♦ Xu(r) ,   o<X<l (9) 

Then we can relate the Helmholtz free energy of the Lennard-Jones system to 

(8) 
the reference system and the perturbation; 

(PAA/N) = (pAAo/N) ♦ (pp/2)J  dXJg(r;X)u(r) dr (10) 

o 

Here g(r;X) is the radial distribution function in the "test" system, AA is 

the excess free energy 

(pAA/N) 'j     (pp/p« - l)dp' (11) 

where p is the pressure, and ÄA is the excess free energy in the reference 

system. With our choice of reference and perturbation interactions, the 

integral over X in Equation 10 represents the effect of turning on the 

attractive forces in the Lennard-Jones fluid: when X = o, g(r;X) is the 

radial distribution function for the reference system, g (r); and when 

X ■ 1, g(r;X) is the Lennard-Jones g(r). Equation 10 can also be written 

in terms of the Fourier transforms of the correlation functions: 

(pAA/N) = (pMo/N) * (pp/2)Ä(o) ♦ [P/2(27!)
3] j'fto(k)u(k)dk 

♦ tP/2(2Tt)3] J dx/ [ftckjX) - ho(k)]u(k)dk 

(12) 

where 

u(k) = /dr u(r)e'lk,i: (13) 
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and h(k;X) is the Fourier transform of the correlation function in the 

"test" system. According to our hypothesis, only the small wave-vector 

contributions will be significant in the last integral of Equation 12. 

Furthermore, the last integral should effectively vanish when the density 

becomes sufficiently high. Thus, if the hypothesis is true, then for low 

temperatures as well as high, the high-temperature approximation 

(p&A/N) := (PAAo/N) + (ßp/2)u(o) + (ß/2)j'ft0(k)u(k)dk       (14) 

will be at best qualitatively accurate (errors —10%) when the density is 

low, but will become quantitatively accurate as the density increases. 

The calculations presented in the next section show that this behavior 

does occur. 

Further tests of our ideas concerning the equilibrium structure of 

simple liquids are found in the application of the pressure (virial) 

(6) 
equation ', 

pp/p « 1 + (PP/6) j'r(aw(r)/9r)g(r)dr (15) 

and the energy equation for the excess internal energy1 J, 

AE/N « (p/2)/w(r)g(r)dE (16) 

These equations probe the quantitative behavior of the radial distribution 

function. According to our hypothesis, when the density is sufficiently 

high. g(r) is accurately approximated by g (r). Thus, by using this 

approximation to evaluate Equations 15 and 16, we have a sensitive test of 

the hypothesis. Such a calculation is carried out in the next section; the 

results obtained at high densities (p* >.65) are in good agreement with 

molecular dynamics results. 
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To perform the numerical evaluations necessary to verify our hypothesis, 

we need the thermodynamic properties and two-particle correlation function 

in the reference system. Rather than perform expensive machine calculations 

to obtain this information, we have invented an approximation method to 

describe the reference system. The method appears to be sufficiently 

accurate for the purposes of this paper. To discuss it, we introduce the 

function y (r) which is defined by the equation 

g0(r) - yo(r)exp[.puoCr)] . (17) 

Physically, y (r) gives the correlations that exist in the reference system 

beyond the range of the reference interaction. Since this interaction is 

harshly repulsive, it seems probable that y (r) can be approximated by 

the similar function appropriate to a hard-sphere system of diameter d, 

y.(r). For this reason, we consider the following approximation: 

go(r) = yd(r)exp[-puo(r)] , (18) 

or 

h0W^  p/dx[yde-
pu° - IJe"1^ . (18«) 

By recalling the role of h (k) as a linear response function, it is seen 

that Equation 18 is equivalent to assuming that for intermediate and long 

wavelength disturbances, the response of the reference system is accurately 

given by the response of a hard-sphere system. Thus, by equating the long 

wavelength (small k) responses of the reference and hard-sphere systems, 

we have a physically reasonable density and temperature dependent criterion 

for determining d: 

f       "Puo r       -P^A 
JdEtydc    - 1] =jdr[yde  

d - 1] (19) 

where u, denotes a hard-core repulsion of diameter d. Within the framework 
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of the compressibility theorem, 

Op/8Pp)p - 1 ♦ p/h(r)dr (20) 

the criterion given in Equation 19 approximates the thermodynamics of the 

reference system with the thermodynamics of the hard-sphere system. For 

the computations presented in the next section, we use the compressibility 

theorem to obtain the thermodynamic properties of the reference system. 

That is, once a value for d is obtained for a particular p and ß , the 

free energy of the reference system is taken to be the free energy of 

the hard-sphere system with diameter d and density p. 

In the treatment described above, the reference system thermo- 

dynamics is obtained from the thermodynamics of a hard-sphere fluid; and 

reliable analytic expressions for the pressure and free energy of such a 

fluid do exist in the literature^ '  . Unfortunately, this if not all 

we need. Also required is an analytic form (or tabulated values) for the 

correlation function (or its Fourier transform) in a hard-sphere system. 

For lack of anything better, we use the analytic solution of the 

Percus-Yevick equation   . Though it is fairly accurate, it represents 

our major source of error in the computations presented in the next 

section. 

To check the accuracy of our treatment of the reference system, we 

have applied the method to a fluid in which the pair-interactions are the 

Lennard-Jones potential for r<o, and zero for r>o. Levesque and Verlet 

have analyzed this system with Monte Carlo calculations ' . We find that 

the agreement between our treatment and the "exact" machine calculations 

is excellent. For example, at T* ■ 1.35 and p* = .8 we obtain 
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(PP /P) = 6.11, and (PAA /N) = 2.81; the Monte Carlo results are (ßp /p) = 

6.07 (± .05) and (ßAA /N) = 2.81. Incidentally, the Rowlinson "steepness" 

(121 (2} criterion    used by Barker and Henderson   for this reference system is 

of comparable accuracy. This is not surprising since the Rowlinson 

criterion and ours should converge to one another in the limit of a very 

steep reference system repulsion. However, the reference interaction 

considered in this paper is slightly less harsh than the one considered 

by Levesquc and Vcrlet, and by Barker and Henderson. The relevance of 

this fact is apparent when one considers one important difference between 

our method and the Rowlinson criterion. Ours fits a temperature and 

density dependent hard-core repulsion to the reference interaction, while 

Rowlinson's fits a hard-core that is only temperature dependent. As a 

result, our criterion gives the physically reasonable behavior that the 

effective hard-sphere diameter decreases as density increases (with the 

temperature fixed) while the Rowlinson method predicts a diameter that is 

constant. In general we find that for a particular repulsive interaction 

the value of our d is slightly larger than Rowlinson's at low densities 

and slightly smaller than his at high densities. 
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III. VERIFICATION 

The numerical consequences of our ideas concerning the equilibrium 

structure of the Lennard-Jones fluid are presented in this section1 J. 

First, the structure is considered directly; we present calculations of 

h(k) and g(r) that are performed within the framework of our hypothesis, 

Equation 8, and the approximate treatment of the reference system. 

Equations 18 and 19. Second, we consider the thermodynamic ramifications 

of our postulate. Comparisons of our results with machine calculations 

and other theories for Lcnnard-Jones fluids are given throughout the 

section. 

The Equilibrium Structure 

In our treatment of the reference system, the function y0(r), 

defined in Equation 17, is approximated by the hard-sphere function 

y.(r). As a result, h (k) can be expressed as 

ho(k) - (ld(k) ♦ p/dr yd(r) (e" Uo -e'^e"1^ (21) 

where n .(k) is the Fourier transform of the two-particle correlation 

function for the hard-sphere system of diameter d. The solution of the 

Percus-Yevick equation for hard-spheres gives convenient analytic 
A 

expressions for h.(k) and yd(r) (0<r<2d). By usxng these expressions, 

we solve Equation 19 for the temperature and density dependent d, and 
A 

calculate h (k) from Equation 21. 

Plots of d(p,p) for a few isochores are given in Figure 2. These 

graphs bear a striking resemblance to Verlet's empirical plots (Figure 17, 

Reference 1) of the temperature and density dependent di meter he found 
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could be used to fit a hard-sphere spectrum, h .(k), to the Lennard-Jones 

A A 
spectrum, h(k). In that work, Verlet first calculated h(k) from molecular 

dynamics experiments. He then found the effective hard-sphere system in 

which h .(k) resembled h(k) with regard to the height of the main peak 

and the position of the second zero of h(k). (The number density of his 

effective hard-sphere system is only approximately equal to that of the 

Lennard-Jones system.) The interesting observation that followed was 

that in the range ii<ko<5TT, the hard-sphere function, n .(k), and the 

A 
Lennard-Jones function, h(k), were very similar even though the hard-sphere 

parameters (d and p) were chosen to match only a small number of properties 

of h(k). We believe that Verlet was actually observing the behavio.- which 

we have postulated to be true: for ko>n, 'h(k) is dominated by the 

repulsive forces. These forces are what define the reference system in 

this paper. Furthermore, from Equation 21, it can be verified that 

differences between the reference system and the appropriate hard-sphere 

system are not appreciable in h(k) until we reach large wave-vectors, 

ko^Sif. 

To strengthen our argument, we plot our h (k) for two thermodynamic 

states and compare with Verlet's molecular dynamics at the same states. 

In Figure 3, the density is sufficiently low to illustrate the dramatic 

discrepancy and then similarity between h (k) and the true Lennard-Jones 

h(k) as we pass from small to large wave-vectors. Incidentally, for the 

state considered in Figure 3, the value of d obtained from Equation 19 

and then used in Equation 21 is (1.005)a; the reported value for Verlet's 

hard-sphere model d is (1.0)o. In Figure 4, we see that at high 

densities the excluded volume effects dominate the correlations to such an 
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extent that h (k) is also in good agreement with the Lennard-Jones h(k) 

for small wave vectors. The value of d for the thermodynamic state 

considered in Figure 4 is (1.025)0, Verlet's hard-sphere model d is 

(1.026)o. 

While these results strongly indicate that our hypothesis is true, 

we also want to discuss the structure as described by the Fourier 

inversion of h(k), namely the radial distribution function, g(r). In 

Figure S, a plot of g (r) as described by Equation 18 is compared with 

the "exact" molecular dynamics Lennard-Jones g(r)   . Here, the thermo- 

dynamic state is similar in density and temperature to the one considered 

in Figure 3. The rather poor agreement between g0(r) and g(r) for all r 

is simply a manifestation of the discrepancy between h (k) and h(k) for 

small k. This juxtaposition of the k-space and r-space representations of 

the structure emphasizes the convenience of considering the Fourier 

transform of the correlation function rather than the actual correlation 

function. While the attractive forces appreciably contribute to only a 

small part of the spectrum, ko< ir, the attractions and repulsions 

contribute (at low and moderate densities) to g(r) for all r>o. Thus, it 

is difficult to say what type of interaction produces a certain effect in 

g(r). Our results indicate that this difficulty is not encountered when 

h(k) -is considered. 

When we reach high enough densities, the repulsions are the dominant 

force in both the r- and k-space representations of the structure. In 

viewing Figure 4, this is no surprise, since we see that at high densities 

the Fourier transform of the correlation function for the reference system 

is similar to that of the Lennard-Jones system at small k as well as large. 
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In Figure 6 a plot of g0(r) as described in Equation 16 is compared with 

the "exact" Lennard-Jones g(r) for a thermod/namic state similar to that 

considered in Figure 4. The agreement between g (r) and g(r) is excellent. 

To emphasize how good the agreement is, we have also plotted the g(r) 

obtained by solving the Percus-Yevick equation for the Lennard-Jones 

f 14) fluidv  . Although the Percus-Yevick theory is fairly accurate when 

applied to harshly repulsive systems, it is seen that at high densities it 

is considerably less accurate when applied to systems with longer ranged 

attractive forces. 

Thermodynamics 

As discussed in Section II, the truth of our hypothesis on the 

equilibrium structure has direct ramifications on the thermodynamic 

properties of a fluid. In particular, the high-temperature approximation 

(see Equation 14), 

(eAA/N)=(pAA0/N) ♦ (Pp/2)/dr g0(r)u(r) (22) 

should be only qualitatively accurate (errors -~10%) at low densities but 

become quantitatively accurate as the density increases. 

We have evaluated the right-hand side of Equation 22 at various 

temperatures and densities. Some of our results are tabulated in Tables 

I and II, and graphed in Figure 7. The numerical integrations were 

performed by using our approximate treatment of the reference system. 

Equations 18 and 19, and the solution of the Percus-Yevick equation for a 

hard-sphere fluid1 '. This solution gives the analytic form of yd(r) for 

0<r<2d, and the analytic form of the Laplace transform of r times the 

hard-sphere radial distribution function. With this information, a simple 
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extension of a method proposed by Frisch, el.al.1 ^ allows us to perform 

the integrations quickly and accurately (the only errors being the Percus- 

Yevick equation itself and our approximate treatment of g (r)). 

Furthermore, the hard-sphere thermodynamic data needed to complete the 

evaluation of Equation 22 (see Equation 20 and comments following it) was 

obtained from Levesque and Verlet's accurate polynomial fit of the machine 

calculations on hard-spheres^ * . The plots in Figure 7 show how the 

excess free energy as approximated in Equation 22 (or Equation 14) does 

converge at high densities (p* >.65) to the values predicted by machine 

calculations^ '  ', The temperatures considered are sufficiently low 

(T*<L1.35) that the accuracy is not a trivial consequence of the possible 

rapid convergence of the high-temperature expansion. The critical 

temperature is approximately 1.35 (or slightly lower); at higher temper- 

atures a number of approximate theories accurately predict the thermo- 

(2  3 17) 
dynamic behavior of the Lennard-Jones gasv * '  . 

In Tables I and II we compare the numerical values arrived at through 

Equation 22 (or Equation 14) with those predicted by other theories and 

machine calculations. One important aspect of our work becomes apparent 

C2) 
when the Barker-Hendersonv ' results are considered. These are the values for 

the excess free energy obtained from the high-temperature approximation in the 

following way: The reference interaction is the Lennard-Jones potential for 

r<o, the perturbation is the Lennard-Jones potential for rxj; the reference 

system is then approximated by a hard-sphere system via the Rowlinson cri- 

terion, and the Percus-Yevick approximation for gd(r) is used. From the tables 

it is seen that with this treatment, the high-temperature approximation gives 

free energies with an error of the order of 10% for liquid temperatures, 
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(T*< 1.35), and the accuracy does not improve as the density increases. This 

lack of improvement is simply a consequence of the interaction separation. 

For the high-temperature approximation to be accurate, the structure of 

the reference system must closely resemble the structure of the total 

Lennard-Jones system. The Barker-Henderson reference system does not satisfy 

this condition at liquid temperatures. However, our separation into 

repulsive and attractive forces does when the density is high enough, and 

as a result, our values of the free energy are virtually indistinguishable 

from the Monte Carlo predictions for p* >.65. 

We have also tabulated the values for the excess free energy 

(171 
recently obtained by Rasaiah and Stellv  . In these calculations, the 

pair-potential is written as a hard-core repulsion plus a perturbation 

part which is defined as the Lennard-Jones potential minus the hard-core. 

Rasaiah and Stell recall the fact that the high-temperature approximation 

f 181 
gives an upper bound to the Helmholtz free energyv ' ,  and use it as a 

variational principle to determine the hard-core diameter. Their results, 

while indeed upper bounds to the "exact" machine calculations are not 

quite as accurate as the Barker-Henderson results. Our results would also 

be rigorous upper bounds to the excess free energy if we had an exact 

treatment of the reference system. We use an approximation scheme and 

thus cannot guarantee that we do obtain such a bound, though in all cases 

tested, we do obtain free energies higher than those predicted by machine 

calculations. 

The thennodynamic results presented here emphasize the importance of 

considering the precise nature of the equilibrium structure in fluids. In 

particular, it is important to understand how different forces effect the 
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structure. In so doing, wc learn what kind of perturbation theory will 

yield a quantitative description of the equilibrium structure and thermo- 

dynamics of the liquid state. Although the high-temperature approximation 

can be very accurate, we do not expect that the next few terms in the 

high-temperature expansion will provide an appropriate theory of liquids 

even when our separation is used. To understand why we recall the 

hypothesis we have tried to verify in this paper: the repulsions dominate 

n(k) for Vo >irt and the presence of attractions is manifested mainly in 

h(k) for ko<n. A comprehensive theory for Lennard-Joncs fluids would be 

one which explains and uses this hypothesis. The straightforward appli- 

cation of the high-temperature expansion will not explain this behavior 

in any simple way. This is true because of the complications involved in 

calculating higher order terms in this expansion. As far as the structure 

is concerned, the first correction to g(r)=:g (r) requires the knowledge 

of the three- and four-particle correlation functions in the reference 

system, and even for hard-sphere systems, reliable representations of 

these functions are not known. Furthermore, the higher order terms for 

the thermodynamic properties are difficult to evaluate or approximate 

(3) 
accurately*1 . A reasonable estimation of the second order term in the 

high-temperature expansion must be obtained by expensive machine 

(2) 
calculations (the local- or macroscopic-compressibility approximationsv ' 

for this term are inadequate1 ' '.   Barker and Henderson have published1, ' 

the results of a Monte Carlo calculation of the second order term for 

their interaction separation which indicate that the high-temperature 

expansion is slowly convergent at liquid temperatures (T*< 1.35). However, 

we have been informed that the reported results are in error^ * ;  and the 

corrected results are better. This may be an indication that while it is 
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computationally difficult, the high-temperature expansion is rapidly 

convergent at low teir.peratures. 

We believe that a theory which recognizes the validity of our 

hypothesis may provide a simpler method to obtain the thermodynamic 

corrections to the high-temperature approximation and in addition give 

an accurate description of the liquid structure. 

Finally, we consider the calculations of the pressure from the virial 

equation, and the excess internal energy from the energy equation. In the ' 

first p^rt of this section we tried to verify that the approximation 

g(r) = g0(r) (23) 

is very accurate at high densities. As further verification, we use this 

approximation to evaluate ßp/p and AE/N through Equations 15 and 16 

respectively. Once again the integrals arc performed within the context 

of our approximate treatment of the reference system: Equations 18, 19 and 

the analytic solution of the Percus-Yevick equation for hard-spheres. The 

f 191 
results are tabulated and compared with molecular dynamics datav '  in 

Table III. Since the virial and energy equations are sensitive probes of 

the structure, the agreement between our simple calculations and the 

machine calculations is seen to afford further verification of our hypothesis. 

In Table IV we compare our results with those obtained from numerical • 

f 14) solutions of the Percus-Yevick equation for the Lennard-Jones fluid ' '. 

Here, our superior accuracy is pertinent to some recent calculations 

performed by Barker, et.al.  '  using the Percus-Yevick equation. This 

work is discussed briefly in the Appendix. 

Of course, values for the pressure (or any other thermodynamic function) 
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can also be obtained by numerically differentiating the free energy (sec 

Equation 11). We have found the use of the high-temperature approximation 

to obtain the pressure in this way is even more accurate than the 

application of the virial equation. However, such results are not relevant 

to the theme of this paper which is to verify a specific hypothesis 

regarding the structure of simple liquids. One finds that the reference 

system pressure is a large positive number (ßp /p is around 8 at p* —.7), 

and the perturbation contribution is about the same size but negative. 

The two add together to give a small number, the quantitative accuracy of 

which is not entirely meaningful. We say this because errors of less 

than 1% in the reference pressure can produce a 10% error (or worse) in 

the total pressure, and such errors must be expected due to the approximate 

treatment uf the reference system. These inaccuracies arise from the attempt 

to relate properties of an effective hard-sphere system with those of the 

reference system, and the errors inherent in the expressions used to 

represent the hard-sphere properties. The differences between our results 

and the machine calculation results for the pressure are comparable to 

the possible errors in the description of the reference system. We note 

that at liquid temperatures the numerical differentiation of the free 

energy obtained from the Barker-Henderson treatment of the high-temperature 

(2  3) 
approximation^ ' y yields pressures that are slightly better than the ones 

we obtain. However, their results are worse when they use a Monte Carlo 

(31 
(rather than Percus-Yevick) hard-sphere radial distribution function '. 

This merely indicates that the accuracy of calculations of the pressure by 

differentiating the free energy obtained from the high-temperature 

approximation is sensitive to slight errors in the reference system pressure 

and pair-correlation function. Hence, the quantitative accuracy (or lack 
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of it) for pressures obtained in this way is not an entirely meaningful 

test of the high-temperature approximation. 
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IV. DISCUSSION 

The four basic conclusions of this paper are the following: a. For 

simple liquids with pairwise additive intermolecular potentials at 

moderate to high densities, it is conceptually worthwhile to regard the 

pair-potential as a sum of repulsive and attractive parts, rather than a 

sum of positive and negative parts, b. To unravel the effects of the 

various parts of the potential on the structure of the liquid, it is 

useful to consider the structure factor of the liquid (the Fourier 

transform of the pair correlation function) rather than the pair corre- 

lation function itself, c. For ko >IT, the attractive part of the 

potential has very little effect on the structure factor for reduced 

(21) 
densities greater than about .5   , i.e., for these values of k, the 

structure factor is nearly equal to that of a hypothetical fluid which 

has only the repulsive forces, d. The attractive part of the potential 

manifests itself primarily in the small k (ko< n) part of the structure 

factor, but this effect decreases as the density increases. 

The purpose of this paper is to establish the validity of our basic 

hypothesis (c and d above). Many of the results tabulated and graphed 

above are sufficiently accurate as to constitute an empirical justification 

for the hypothesis. We have given physical arguments to make these ideas 

plausible and used them to develop a numerically accurate way of obtaining 

thermodynamic properties for dense liquids. We have also discovered a 

very simple and accurate approximation for the radial distribution function 

for dense liquids, namely g(r):rg (r). But we are still lacking a 

fundamental statistical mechanical theory to explain our ideas. If we 

had such a theory and could understand why the attractive part of the 

potential has such a small effect on the structure of the liquid, we could 
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probably calculate this effect and the net result would be a highly accurate 

theory of the liquid state extending over a wide range of temperature and 

density. 

It should be emphasized that all the conclusions drawn in this paper 

have been tested on the Lennard-Jones system only. This indicates another 

reason for pursuing a theoretical explanation of our hypothesis. In so 

doing one should be able to determine the class of systems for which our 

ideas are valid. A principal difference between the repulsive and 

attractive forces in the Lennard-Jones fluid is that the former varies 

far more rapidly in space than the latter. This difference may explain 

the different effects of the two on the structure of the liquid. Thus, 

when the spatial variations of the repulsions and attractions are comparable 

(.22) 
(as in a square-well system), our hypothesis may be invalid   . 

Though we are stressing the need for further research, many of our 

ideas are simple enough computationally that they can now be applied to 

experimental studies. For example, when Verlet calculated h(k) 

from his molecular dynamics "experiments" he compared his results with those 

obtained from x-ray scattering experiments on liquid argon. The particular 

(23) 
experiment of interest here is that of Mikolaj and Pingsv J  which is 

depicted by Verlet^  in his Figure 6. Verlet's work shows that the main 

peak in n(k) for argon is slightly higher than, and slightly out of phase 

with, the peak in the Lennard-Jones h(k). In the context of our work, a 

discrepancy of this sort would indicate that the Lennard-Jones potential, 

with the parameters used by Verlet, is not an accurate representation of 

the repulsive forces in liquid argon. Information about the repulsive 

forces could be obtained from the study of x-ray structure factors if the 
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experiment were performed for a wide variety of densities and temperatures. 

For each density and temperature, an effective hard-sphere diameter could 

be obtained by fitting the Percus-Yevick hard core structure factor to 

the experimental data for k>Ti/o. (According to our hypothesis, this one 

parameter is all the information that can be obtained about the repulsive 

forces from an experiment done at one temperature and density.)  From the 

density and temperature dependence of this parameter, information about 

the repulsive part of the potential can be obtained with the aid of 

Equation 19 in much the same way as intermolecular potential information 

is obtained from the temperature dependence of the second virial coefficient 

of a gas with the aid of the statistical mechanical expression for this 

latter quantity. This program can be carried out even before we have an 

adequate theory of the effect of the attractive part of the potential on 

the small k part of the structure factor. (Our work also indicates that 

at high densities it may be impossible to get meaningful information 

about the attractive part of the potential from x-ray experiments.) 

In the effort to avoid expensive calculations, we have used an 

approximate treatment of the reference system which does produce some 

error. Probably the most significant source of the inaccuracies was the 

use cf the Percus-Yevick equation for y.. However, we do not think the 

errors are significant enough to alter the conclusions of this paper. Until 

3 
densities are so high that pd > .9, we think that our calculated values of 

the excess free energy and excess internal energy should agree to better 

than a percent with those that might be obtained from an exact treatment 

of the reference system. This is born out by a comparison between the 

Monte-Carlo and approximate (Percus-Yevick) evaluation of the high- 

temperature approximation for the Barker-Henderson separation of the 
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Lennard-Jones potential (see Reference 10 and column S of our Table I). 

When the density does become very large, however, the Percus-Yevick 

approximation for hard-spheres is not reliable, and significant errors 

must be expected. For example, in Table III, our results for the internal 

energy are in excellent agreement with molecular dynamics except for the 

states p* » .85, T* = .658; p* » .85, T* = .591; and p* » .88, T* » .591. 

3 
The values for pd at these states are .93, ,95, and .97 respectively. 

All the other states considered in that table correspond to smaller 

effective hard-sphere densities. It would be worthwhile if extensive 

tables of reliable computations (e.g., machine calculations) of hard- 

sphere functions were published. This would help us add to the 

credibility of our work, and help workers who wish to use perturbation 

theories to calculate pressures, which, as we have discussed in 

Section III, are sensitive to small errors in the reference system even 

3 
at densities smaller than pd = .9. 
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APPENDIX 

We consider the correspondence between the calculation of the free 

energy discussed herein and the recent adaptation of the Percus-Yevick 

theory by Barker, et.al.   . These workers use the Percus-Yevick equation 

for the Lennard-Jones potential to obtain the internal energy via the 

energy equation (Equation 16), numerically integrate these results with 

respect to ß to get the free energy, and numerically differentiate with 

respect to p to obtain the pressure. They are motivated to proceed in 

this fashion since the energy equation is a less sensitive test of 

inaccuracies in g(r) than is the pressure equation (Equation IS) . An 

indication of the errors to be expected in the energy when the Percus- 

Yevick g(r) is used at high densities and low temperatures is given in 

Table IV. 

To understand the correspondence of their procedure to the free 

energy calculation discussed in this paper, we introduce the notation 

♦ (r) = pw(r) (A-l) 

and the "test" function, ♦(r;X), which defines the test system 

♦ (r;X) = ^(r) ♦ X^r)  , o<X<l CA-2) 

such that Hr;!)  ■ <Kr).    The function $ (r)  defines a reference system. 

After differentiating the canonical partition function with respect to 

X, it is easy to show that 

pAA/N =  (p&A/N) ♦  (p/2) /    dx/4.1(r)g(r;X)dr (A-3) 

X=o 

Equation A-3 is Equation 10 when our choice of test system and perturbation 
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parts, 4 » ßu and ^ ■ ßu, is made. However, the choice of ^ «« ß w and $. 

(ß - ß )w f0T  some ß can also be made in which case Equation A-3 is 

equivalent to integrating the energy equation between two inverse 

temperatures, ß and ß, to obtain the free energy. The correspondence 

is explicitly seen by changing variables in Equation A-3 from X to ß , 

the effective inverse temperature in the test system where ß = ß ♦ 

X(ß - ß ). This procedure is the one carried out by Barker, et.al.   . 

It is seen that determining the "constant of integration", (ßAA/N)|   , 

is equivalent to determining a reference system excess free energy. 

Previously^  , Barker and Henderson chose as their reference system the 

system with the positive part of the interaction potential at temperature 

(ßO' . In their recent work^  ,  they have chosen the Lennard-Jones 

fluid at a different temperature, (ß €)' , as the reference system and used 

machine calculation.data to determine AA(ß ) for the Lennard-Jones fluid 

at several densities. They then solve the Percus-Yevick equation for the 

Lennard-Jones fluid to give g(r,X) = g(r,ß) and numerically perform the 

X integration as well as the r integration in Equation A-3 to go from the 

reference system (state) to the total system (final state). 

Although Equation A-3 is valid for an arbitrary choice of reference 

system and perturbation parts, the separation we have suggested is 

particularly convenient at high densities since here g(r,X)2:g (r) to a 

very good approximation. The X integration in Equation A-3 is then trivial 

and the calculation of the free energy is greatly simplified. 
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TABLE: I. Approximate and Monte-Carlo results for the excess free energy on the 

T* ■ .75, 1.15 and 1.35 isotherms. Column 3 lists results obtained from the 

high-temperature approximation with our potential separation and our treatment 

of the reference system. Machine calculation results from References 10 and 16 

are given in Column 4. The results obtained from the Barker-Henderson and 

Rasaiah-Stell treatments of the high-temperature approximation are given in 

Columns 5 and 6 respectively. The Barker-Henderson results were calculated 

by us. 
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TABLE I 

- pAA/N 
• 

1 T* P*   ] Eq. 22 Monte-Carlo Barker-Henderson Rasaiah-Stell 

.75 .1 .55 .81 .57 .57 

.2    1 1.15 1.48 1.16 1.15        { 

.3    | 1.78 2.11 1.77 1.76        | 

.4    | 2.42 2.68 2.38 2.37        | 

.5 3.06 3.23 2.96 2.96 

.6 3.65 3.74 3.48 3.48 

.7 4.14 4.17 3.90 3.88 

.8 4.46 4.47 4.16      1 4.08 

.84 4.51 4.54 4.20 

1.15 .1 .29 .39 .30 .30 

.2 • .60 .73 .61 .60 

.3 .92 1.05 .92 .89 

.4 1.23 1.33 1.20 1.17 

.5 1.51 1.59 1.46 1.41       1 

.55 1.63 1.69 1.56 

.6 1.74 1.79 1.65 1.58        | 

.65 <  1.82 1.84 1.72 

.75 ' 1.88 1.88 1.76 

.85 1.77 1.78 1.63 

| 1.35 .1 i   •22 .30 .23 1    •22        1 
.2 .45 .56 .46 * .44        I 
.3 .68 .90 .69 .65 

.4 .90 1.00 .89 !    *84        1 

.5 1.09 1.16 1.05 .99        j 

.6 1.22 1.26 1.16 1.07        | 

.7 1.26 1.29 1.18 1.05        1 

•8 1.16 1.19 1 07 .88 
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TABLE 11. Approximate results for the excess free energy on the o* ■ .88, .85, 

.75 an4 .65 isochores. Column 3 lists results obtained from the high-temperature 

approximation with our potential separation and our treatment of the reference 

system.  In Column 4 the results from an empirical equation of state (obtained 

by fitting a polynomial to molecular dynamics results for the pressure, Reference 

10) are listed. These values for -ßAA/N are generally too high at temperatures 

below T*<1.35, and not very reliable for higher temperatures. In Column 5 the 

results for the Barker-Henderson treatment (calculated by us) of the high- 

temperature approximation are eiven. 
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TABLE II 

.- PAA/N 

1        p* T*     | Eq. 22 Empirical Barker-Henderson 

I     -88 1.095 1.94 1.99 1.80 

.94 2.G4 2.88   | 2.65 

.591 6.80 6.86 6.30 

1     .85 2.889 - .93 - .86   | - .94 

2.202 - .44 - .37 - .47 

1.214 1.51 1.55 1.39 

1.128 1.86 1.91 1.73 

.880 3.32 3.35 3.10       | 

.782 4.18 4.21 3.90       | 

.786    i 4.14 4.17 3.86 

.760 4.41 4.44 4.10 

.719 4.87 4.90 4.53 

.658 5.66 5.71 5.26 

.591 6.74 6.81 6.25 

.75 2.849 - .56 - .50 - .58 

• 1.304 1.36 1.41 1.27 

I ' " 1.069 2.22 2.26 2.08 

1.071 2.21 2.25 2.07 

.881 3.27 3.30 3.06 

.827 3.66 3.69 3.43 

.65 2.557 - .18 - .20 - .11 

1.585 .79 |     .85 .73 

1.036 2.24 2.30 2.12 

.900 2.90 1    2.96 2.74 
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TABLE III. Approximate and molecular dynamics results for the pressure and 

internal energy. Columns 3 and S contain our results obtained by applying 

Equation 23 to Equations IS and 16 respectively. Molecular dynamics results 

(References 19 and 10) are listed in Columns 4 and 6; the error bounds for 

these machine calculations are ±.05. 
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TABLE III 

PP/P -AE/Nc          1 

Pressure Molecular Energy Molecular 

1    p* T* Equation Dynamics Equation Dynamics 

.88 1.095 3.42 3.48 5.92 5.85a 

.94 ..  2.87 2.77 6.08 6.04a 

.591 .18 - .18 6.47 6.53 

1 -s5 2.889 4.27 4.36 4.35 4.25 

2.202 4.11 4.20 4.85 4.76 

1.214 3.05 3.06 5.65 5.60 

1.128 2.82 2.78 5.73 5.69 

.88 1.82 1.64 5.96 5.94 

.782 1.20 .98 6.06 6.04 

.786 1.23 .99 6.05 6.05 

.76 1.03 .82a 6.08 6.07 

.719 .69 .36C 6.12 6.12 

.658 .09 - .20 6.19 6.39b 

.591 - .75 - 1.20 6.26 6.46b   1 
1  .75 2.849 3.05 3.10 4.09 4.07 

1.304 1.63 1.61 4.99 5.02 

1.069 .90 .90 5.15 5.19 

1.071 .91 .89 5.15 5.17 

.881 - .02 - .12 5.28 5.31 

.827 - .38 - .54 5.32 5.38 

.65 2.557 2.08 2.14 3.78 3.78 

1.585 1.21 1.25 4.20 4.23 

1.036 - .23 - .11 4.46 4.52 

.90 - .91 - .74 4.52 4.61 

Revised results (see Reference 10). 

Revised results (see Reference 10). The unrevised values were 6.19 at 
T* ■ .658, and 6.26 at T* = ,591. 

c Molecular dynamics results for p* • .85 and T* » .72 (Reference 10) predict 
pp/p = .43. 
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TAbLi: IV. Approximate and molecular dynamics results for the pressure and 

internal energy as obtained from Equations 15 and 16 respectively. Columns 3 

and b give the values obtained by applying the approximation g(r):rg0(r). 

Columns 4 and 7 give the molecular dynamics results (Reference 19); the error 

bounds here are ±.05. The results obtained by using the solution of the 

Percus-Yevick equation for g(r) (Reference 14) are given in Columns 5 and 8. 

TABLE IV 

PP/P -PAE/N 

1   p* T* This Work MD PY This Work MD PY 

.85 1.128 2.82 2.78 3.57 5.08 5.05 4.98 

.88 1.82 1.64 3.17 6.77 6.75 6.61 

.786 1.23 .99 2.97 7.70 7.70 7.51 

.719 .69 .36 2.82 8.52 8.51 8.28 
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FIGURE CAPTIONS 

Figure 1. Separation of the Lennard-Jones potential, w(r}, into a 

part containing all the repulsive forces, u (r), and a part 

containing all the attractive forces, u(r). 

Figure 2. Plots of d(ß,p) for a few isochores. 

Figure 3. Plot of h(k) for p* = .5426, T* « 1.326. The line represents 

Equation 21; the circles are the molecular dynamics results 

(Reference 1). 

Figure 4. Plot of h(k) for p* » .844, T* « .723. The line represents 

Equation 21; the circles are the molecular dynamics results 

(Reference 1). 

Figure 5. Plot of g(r) at a moderate density: p* = .50, T* ■ 1.36. The 

line represents Equation 18; the circles are the molecular 

dynamics results (Reference 1). 

Figure 6. Plot of g(r) at a high density: p* « .85, T* = .88. The line 

represents Equation 18; the circles are the molecular dynamics 

results (Reference 1); and the dashed line represents the 

numerical^solution of the Percus-Yevick equation for the 

Lennard-Jones potential (Reference 14). 

Figure 7. Plots of ßAA/N for two isotherms. In the upper graph, the line 

represents Equation 22; the crosses are the Monte-Carlo results 

(Reference 16). In the lower graph, the "Error" denotes the 

difference at T* » .75 between the ßAA/N as obtained from 

Equation 22 and ßAA/N as obtained from Monte-Carlo calculations. 
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ABSTRACT CONTD. 

even the pressure with the aid of the pressure (virial) equation are remarkably 
accurate and provide additional support for the conclusions. In short, we 
find that the structure factor and pair distribution function of a simple 
fluid is dominated by the repulsive forces at high densities even at low 
temperatures. The implications of our conclusions to perturbation theories 
for liquids, and to the interpretation of x-ray scattering experiments is 
discussed. 
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i , .«.■»..   rhc equilibrium structure and thermodynamics of a simple liquid is discussed.1 
[The particular system considered in our calculations is the Lennard-Jones liquid in         i 
Lhich the2ip.termglecular  interaction is the pairwise additive 6-12 potential, w(r)«          1 
l-MC-f/r)    -(j/r) ].    The potential is separated into two parts, a reference part containl- 
ling all  the repulsive forces and a perturbation containing all the attractive forces.      1 
l(This  separation is distinctly different from the often-used separation of the potentiall 
linto positive and negative parts.)     It is found that the effects of the two parts of thel 
[potential on the structure of the  liquid are most  easily discussed in terms of the struct 
Iture factor  (or equivalently,  the Fourier transform of the pair-cor elation function)      1 
jrather than the pair-correlation function itself.    For values of the Fourier transform   | 
[variable, k, greater than about "/a, where a is the distance at which the intermolecularj 
[potential   is  :ero,  the attractive part of the potential has very little effect on the      I 
[structure factor for reduced densities greater than about   .5;  i.e., for these values of 1 
[k,  the  structure factor is equal  to that of a hypothetical  reference fluid which has        [ 
[only the  repulsive forces.    The attractive part of the potential manifests itself pri-    [ 
jmarily  in the small k part of the structure factor, but this effect decreases as the       | 
[density  increases and is almost negligible at  reduced densities of about   .7.    These con--| 
Lludions are established by comparing Verlet's molecular dynamics structure factor for   [ 
the Lennard-Jones fluid with the reference system structure factors calculated with the j 
aid of a simple hut accurate approximation described herein.    On the basis of these         [ 
[results a very simple prescription is given for calculating the radial distribution funcj- 
tion of a simple  liquid at high densities which is more accurate than those obtained by 1 
any previously reported theory.    Calculations of the free energy, internal energy, and   [ 
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